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Abstract. We investigate clean cylindrical nanostructures with an applied longitudinal static magnetic
field. The ground state of these systems becomes degenerate for particular values of the field due to
Aharonov-Bohm effect. The Coulomb interaction introduces couplings between the electronic configura-
tions. Consequently, depending on particular selection rules, the ground state may become, in the inter-
acting case, a many body state at the degeneracy points: a gap is then opened. To study this problem, we
propose a variational multireference wave function which goes beyond the Hartree-Fock approximation. Us-
ing this ansatz, in addition to the replacements of some crossings by avoided crossings, two other important
effects of the electron-electron interaction are pointed out: (i) the long-range part of the Coulomb potential
tends to shift the position in magnetic field of the crossing or avoided crossing points and, (ii) at the points
of degeneracy or near degeneracy, the interaction can drive the system from a singlet to a triplet state
inducing new real crossing points in the ground state energy curve as function of the field. In any case, the
crossing points that are due to either orbital or spin effects, should manifest themselves in various exper-
iments as sudden changes in the response of the system (magnetoconductance, magnetopolarisability, ...)
when the magnetic field is tuned.

PACS. 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and
nanocrystals – 71.10.-w Theories and models of many-electron systems – 75.20.-g Diamagnetism,
paramagnetism, and superparamagnetism

1 Introduction

Since the early days of quantum mechanics, it is known
that the low energy electronic properties of aromatic
molecules are very sensitive to a magnetic field applied
perpendicularly to their planes [1]. The field breaks the
time reversal symmetry and induces an electronic current
running around the circumference of the molecule. This
is the persistent current, arising due to Aharonov-Bohm
effect [2]. This is an equilibrium phenomenon, periodic in
magnetic flux with period φ0 = hc/e, the flux quantum [3].
But, to be able to measure it requires systems with char-
acteristic lengths in the nanoscopic or mesoscopic scale.
Indeed, on the one hand, the electron motion has to stay
coherent over the whole system which is possible if the sys-
tem size is smaller than the electronic coherence length i.e.
the length over which an electron can be considered to be
in a pure state. On the other hand, to cover a full period
of magnetic flux requires ring with sufficiently large diam-
eter. This is not the case for the usual aromatic molecules
for which field as large as 105 tesla are needed to ob-
serve the periodicity. However, many man-made systems
in the appropriate length scale are available in various
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forms nowadays, such as isolated or ensemble of metallic
or semiconducting rings [4], carbon nanotubes [5–7] and
rings of carbon nanotubes [8,9]. Therefore, the study of
persistent current has regained lot of interest during the
last ten years.

Metal or semiconductor rings are studied intensively
since the nineties. Motivated by early theoretical predic-
tion [10], a few experiments have detected a sizable per-
sistent current in different systems [4]. But, neither the
magnitude of the current – one or two orders larger than
expected – nor the diamagnetic sign of the response mea-
sured experimentally can be explained by existing theo-
ries yet. Since then, most of the theoretical efforts are de-
voted to the study of the interplay between disorder and
Coulomb interaction, but without convincing conclusions
up to now [11].

Carbon nanotubes were discovered by Iijima in
1991 [5]. They are fascinating materials whose electronic
properties are determined in a unique way by the topol-
ogy of their lattice: they are rolled up strip of graphite
sheet that can be either metallic or semiconducting [12],
depending on their diameter and chirality. In any case, the
electronic spectrum of these systems seems to be very sen-
sitive to an applied magnetic field suggesting large orbital
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magnetic response [13,14]. Indeed, strong field effects have
been seen in measurements of the conductance of multi-
walled carbon nanotubes [6]. More recently, changes in
the band gap of semiconductor single-walled nanotubes
induced by a magnetic field has been detected [7]. Magne-
toconductance measurements of rings of carbon nanotubes
have also been performed [8].

In order to better understand the existing experimen-
tal results and in the wait of future new coming experi-
ments, in particular on carbon nanotubes that can be ob-
tained with a high degree of cleanness, additional studies
of electronic multichannel systems are needed. Here, we
consider electrons on the surface of cylinders (multichan-
nel systems) described as lattices, without disorder but
with Coulomb interaction. We are interested in how the
Coulomb interaction can affect their ground state proper-
ties as function of the magnetic field. This kind of study
may also be relevant for diffusive systems i.e. strongly dis-
ordered, since a proper understanding of the clean case
could help to find a formalism able to treat disorder and
interaction on equal footing. Similar studies were done in
the past but, either for pure 1D systems i.e. systems with
only one electronic channel (rings), using lattice [15,16]
or continuous models [17–20], or for multichannel systems
(cylinders) but with strong disorder using first order per-
turbation theory or the Hartree-Fock approximation to
treat interaction [21]. The conclusions obtained here are
not contained in these works.

In the pure case and without electron-electron inter-
action, an axial magnetic field induces many level cross-
ings whatever the topology of the lattice is. For instance,
square lattices and honeycomb lattices were studied in
references [22] and [23]. At zero temperature, because of
these degeneracies in the electronic spectrum, the ground
state energy shows also crossing points for particular val-
ues of the field; at these points, the ground state is degen-
erate. In this work, we are particularly interested to de-
scribe the behavior of the ground state energy at the direct
vicinity of these points taking into account Coulomb inter-
action. The qualitative features shown below are expected
to be independent of the topology of the surface. There-
fore, we limit our investigations to square lattices only,
for simplicity. Application to honeycomb lattices (carbon
nanotubes) will be presented elsewhere.

Depending on particular selection rules, the Coulomb
interaction may contribute to mix between them the de-
generate electronic configurations, replacing some of the
crossing points by avoided crossings. In such case, the
ground state becomes a true many-body state – at least
at the vicinity of the crossing points – unable to be de-
scribed by any mean field treatment based on one Slater
determinant. In this work, we propose a ‘minimal’ varia-
tional wave function to deal with this particular problem,
going beyond a simple Hartree-Fock calculation. As a re-
sult, in addition to the avoided crossing formation, we find
two other effects caused by repulsive interaction. (i) The
positions in magnetic field of the crossing or avoided cross-
ing points are shifted. (ii) The total spin of the system may
be change from singlet to triplet; it follows sequences of

singlet → triplet → singlet transition at the vicinity of the
crossing points.

The paper is organized as follows. In Section 2, the
model without Coulomb interaction is presented and the
origin of the crossing points induced by an applied mag-
netic field is described. In Section 3, we introduce the
model with Coulomb interaction. In a first subsection, ex-
act diagonalization results are shown and the main inter-
action effects are discussed. In a second subsection, our
variational ansatz is presented and some effects of the
Coulomb interaction are shown to be well reproduced by
our approximation. Last, in a third subsection, possible
spin effects are analyzed.

2 Non interacting electrons. Orbital effects

The generic systems we consider in this work are rolled
square lattices. In this section we start by neglecting
the Coulomb interaction to focus on orbital effects only.
The electrons are then described by the following nearest-
neighbor tight-binding model where a uniform magnetic
field, H , parallel to the cylindrical axis, is included via the
Peierls-London substitution [22]

Ĥ0 =
N∑

n=1

M∑

m=1

∑

σ=± 1
2

{
t
(
c†n+1,m,σcn,m,σe

i 2π
N φ + h.c.

)

+t′
(
c†n,m+1,σcn,m,σ + h.c.

)}
(1)

where φ is the magnetic flux through the section of the
cylinder in units of the flux quantum φ0 (φ0 = hc/e). The
two indices (n,m), two integers, are the coordinates of the
lattice sites: n is the coordinate along the circumference,
1 ≤ n ≤ N , and m the one along the cylinder axis, 1 ≤
m ≤M . The fermionic operator c†n,m,σ (cn,m,σ) is the cre-
ation (destruction) operator of an electron at site (n,m)
with spin σ. We apply periodic boundary conditions along
the circumference (c†n+N,m,σ(cn+N,m,σ) = c†n,m,σ(cn,m,σ)),
and open boundary conditions along the cylinder axis. The
spectrum of the Hamiltonian (1), which depends continu-
ously on the magnetic flux, is [22]

εp,q(φ) = 2t cos
(

2π
N

(p+ φ)
)

+ 2t′ cos
(

π

M + 1
q

)
(2)

with p and q two integers such that −N/2 ≤ p ≤ N/2− 1
and 1 ≤ q ≤ M . In the following, unless it is explicitely
specified, t′ = t. Note that the spectrum and therefore
every thermodynamic quantity, is periodic in flux, with
periodicity φ = 1 (in units of φ0) [3]. As the magnetic
field is increased, the energy levels evolve and many level
crossings appear [22,23] (cf. Fig. 1). The eigenstates cor-
responding to the spectrum (2) are [22]

ϕp,q(n,m) =

√
2

N(M + 1)
ei 2π

N pn sin
(

π

M + 1
qm

)
. (3)
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Fig. 1. Lowest energy levels of a cylinder with N = 100 (num-
ber of sites along the circumference) and M = 100 (number
of sites along the cylindrical axis) as function of the magnetic
flux φ (in units of φ0 = hc/e). Numerous level crossings appear
at values of φ which depend on the cylinder geometry.

At zero temperature, the ground state energy of the
system with Ne electrons is obtained by filling up suc-
cessively the lowest energy levels according to the Pauli
principle. Here, we restrict our study to the case of equal
number of up and down spins i.e. Sz = 0, where the low-
est Ne/2 levels are doubly occupied. The variations of the
energy levels with the magnetic field cause changes in the
level occupation. As a consequence of that, at certain val-
ues of the magnetic field, φc, a former excited state may
become the new ground state. Such a switch of ground
state produce cusps in the ground state energy curve.
We can see an example in Figure 2a for a cylinder with
N = M = 10 and 80 electrons; the ground state energy
as function of the magnetic flux shows 5 different cusps.
At these particular points, the ground state is changed
from a state |Ψi〉 to a new one |Ψo〉 (i for ‘in’, and o
for ‘out’ to do an analogy with scattering theory) which
are each a Slater determinant based on the one-electron
states, {ϕp,q} (see Eq. (3)), eigenfunctions of the Hamilto-
nian (1). The two determinants differ only by the highest
occupied level, ϕH

pi,qi
and ϕH

po,qo
(where the upperscript H

is for Highest).
One may see this orbital effect as a succession of scat-

tering events where the time is replaced by the magnetic
flux. The system of Ne particles evolves freely until a par-
ticular ‘time’, φc, where the most energetic particle is scat-
tered: ϕH

pi,qi
→ ϕH

po,qo
. The total momentum of the elec-

tronic system is then changed accordingly. Depending on
the one-electron state exchanged, one should distinguish
between

– ‘forward scattering’ (FS) where the two one-electron
states, (pi, qi) and (po, qo), correspond to particles
moving in the same direction along the circumference,
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Fig. 2. Cylinder with N = M = 10, Ne = 80 and Sz = 0.
(a) Energy of the ground state as function of the magnetic flux.
Doing an analogy with scattering events, the different cusps
are classified into Forward (FS) and Backward (BS) Scatter-
ing types of event (see text). Here, only the cusp at φ � 0.12 is
a FS, the other ones are all BSs. (b) The corresponding persis-
tent current. The discontinuities are more pronounced for BS
than FS. The PC changes its sign through the discontinuities
for BS but not for FS.

– ‘backward scattering’ (BS) where the two one-electron
states, (pi, qi) and (po, qo), correspond to particles
moving on opposite direction along the circumference.

In general, a FS corresponds to smaller change in mo-
mentum, δk = ([(pi − po)2π

N ]2 + [(qi − qo) π
M+1 ]2)1/2, than

a BS. In Figure 2a, only the cusp at φ � 0.12 is due to
a FS event, all the others are BS events. In this example,
there is five successive scattering events (pi, qi) → (po, qo):
(2, 6) → (−1, 8), (−1, 8) → (−4, 1), (3, 3) → (−3, 4),
(2, 5) → (−1, 8) and (1, 7) → (−4, 2).

The persistent current (PC) is a thermodynamic quan-
tity given, at zero temperature, in terms of the ground
state energy E by

IPC = − 1
φ0

∂E(φ)
∂φ

= − 2
φ0

∑

(p,q)occ

∂εp,q(φ)
∂φ

. (4)

The second equality arises for free electrons only and in
the case where Sz = 0. It can be shown that this derivative
is proportional to the average of the current operator. This
current yields an orbital magnetic moment which can be
detected experimentally [4]. Obviously, the persistent cur-
rent shows a discontinuity for each value of the magnetic
flux where the ground state energy shows a cusp. Figure 2b
gives an example for the very same cylinder (N = M = 10,
Ne = 80). The PC changes sign through the discontinuity
for BS but keep the same sign for FS. Note that the per-
sistent current in mesoscopic cylinders was studied with
some details in the past [22,24]. In particular, it was shown
in reference [24] that its intensity strongly depends on the
shape of the Fermi surface. This property has important
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consequences for carbon nanotubes [14]. Most of the other
studies insist on the role played by disorder [21,25]. As
a remark, one may add that the orbital effect described
above, works to reduce the intensity of the persistent cur-
rent: if one would keep the level occupation frozen and
then, let evolve the ground state energy as function of the
magnetic flux the resulting PC would be more than one
order of magnitude larger.

The discontinuities seen in the PC (Fig. 2b) is a general
phenomenon within the free electron picture, that affects
any response function. For instance, in reference [23] the
static electric polarizability of several cylindrical systems
was studied and shown to present these characteristics. It
was then suggested to use this physical quantity to get
some insights into the electronic structure of nanoscopic
materials such as carbon nanotubes. In more realistic sit-
uations, the neighboring energy levels (Fig. 1) are coupled
by various interactions i.e. Coulomb interaction, disorder.
In consequence, the levels will not cross each other but
rather will come close and then repel in avoided crossings.
Therefore, the different response functions of the system
will not show discontinuities but rather abrupt changes at
the position of the avoided crossings. Already long ago,
Aharonov-Bohm oscillations were predicted to occur in
thermodynamics quantities of normal metal cylinders due
to the electrons located near the surface or in hollow thin-
wall metal cylinders [26].

Next we consider cases with Coulomb interaction, as-
suming the system to be perfectly ordered.

3 Interacting electrons. Coulomb and spin
effects

In this section, we consider the same cylinders pierced by
a magnetic flux but, with interacting electrons. Therefore,
we investigate the following Hamiltonian

Ĥ = Ĥ0 + Ĥint (5)

where Ĥ0 describes free electrons in applied magnetic field
and has been defined previously (see Eq. (1)). The second
term introduces the Coulomb interaction

Ĥint =
1
2

∑

(n,m)σ,(n′,m′)σ′
U(n,m),(n′,m′)c

†
n,m,σc

†
n′,m′,σ′cn′,m′,σ′cn,m,σ.

(6)

We focus mainly on long range interaction but we give also
results for short range potential in the last subsection. To
be more realistic, we could have added a set of positive
point charges localized at the lattice sites but, this would
not have changed qualitatively the results presented here.
We decide then to neglect the positive background as it is
usually done in the context of persistent current [15,21].
To be specific, we choose the Ohno potential known in
the chemical literature where it is often used to describe

π electrons in organic materials such as conjugated poly-
mers or carbon nanotubes

U(n,m),(n′,m′) =
U√

1 + a0r2(n,m),(n′,m′)

. (7)

It includes screening effects due to the inner electrons via
an effective screening constant, a0, with typical value of
0.611 Å

−2
[27]. r(n,m),(n′,m′) is the distance, measured

in 3d space, between two electrons siting in sites (n,m)
and (n′,m′) given in angström; we choose the lattice units
to be close to the usual carbon-carbon bond length in
graphite, a = 1.4 Å. Introducing R, the radius of the cylin-
der, we can rewrite the Ohno potential as

U(n,m),(n′,m′) =
U√

1 + a0

[
a2

(
m−m′)2 + 2R2

(
1 − cos(n− n′)2π

N

)] . (8)

The functional form of the potential is then fixed and only
U is kept as a variable. The main characteristics of this
particular potential are rather general: a 1/r behavior at
large distances and an effective screening which prevents
from any discontinuities at short distances. It could then
also be taken as a reasonable Coulomb interaction for
other systems such as usual semiconductors or even, for a0

very large (the limit a0 → +∞ gives the Hubbard model),
usual metals.

A possible effect of the electron-electron interaction is
to couple the states |Ψi〉 and |Ψo〉. Since they are degener-
ate in energy for a particular value of the magnetic flux,
such coupling, even weak, would have dramatic effects: at
the vicinity of the crossing point, the ground state would
become a many-body state not able to be described by an
Hartree-Fock procedure. At first order, the coupling term
reads

Γ = 〈Ψi|Ĥ|Ψo〉 =
1
2

∑

n,m,n′,m′
ϕH∗

pi,qi
(n,m)ϕH

po,qo
(n,m)

× U(n,m),(n′,m′)ϕ
H∗
pi,qi

(n′,m′)ϕH
po,qo

(n′,m′) . (9)

Inserting the expression of the wave functions (3) in this
equation, we can establish the following selection rules: Γ
is non null only if ∆p = pi − po = zN

4 , with ∆p ∈ Z and
z ∈ Z. This implies that zN is a multiple of 4. To give an
example, for N = 6, Γ �= 0 if ∆p = 0 or ∆p = ±3. These
selection rules are in agreement with the results of refer-
ence [28] where, moreover, differences between continuous
and lattice models, as the ones used in the present work,
were reported. Indeed, for a continuous model, due to the
rotational invariance of the Hamiltonian, Γ is non-null for
∆p = 0 only [28]. The final expression of Γ depends on
the range of the potential. For a short range – or Hubbard
term – if the selection rules are fulfilled one gets

Γ = Γs =
4U

N(M + 1)2

M∑

m=1

sin2 πqim

M + 1
sin2 πqom

M + 1
. (10)
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For a long range potential such as the Ohno potential, if
the selection rules are fulfilled one gets

Γ = Γl =
4U

N(M + 1)2

[N/2]∑

r=0

ei 4π
N ∆pr

×
∑

m,m′

sin πqim
M+1 sin πqom

M+1 sin πqim
′

M+1 sin πqom′

M+1√
1 + ao

[
a2(m−m′)2 + 2R2

(
1 − cos r 2π

N

)] (11)

where [N/2] is for the integer part.
Finally, as a remark, one may add that a weak dis-

order mixes, at first order, the two states |Ψi〉 and |Ψo〉,
giving two new states, |Ψ1〉 = αd|Ψi〉 + βd|Ψo〉 and |Ψ2〉 =
βd|Ψi〉−αd|Ψo〉, with corresponding energies separated by
a gap proportional to the disorder strength [29]. In such
case, the selection rule found previously breaks down and
interaction occurs at every quasi-degeneracy. The coupling
due to the coulomb interaction has then two contributions

Γd =
〈
Ψ1

∣∣∣Ĥint

∣∣∣Ψ2

〉
=

(
β2

d − α2
d

)
Γ

+ αdβd

(〈
Ψi

∣∣∣Ĥint

∣∣∣Ψi

〉
−

〈
Ψo

∣∣∣Ĥint

∣∣∣Ψo

〉)
(12)

the former term is the coupling between |Ψi〉 and |Ψo〉 stud-
ied before (Eq. (9)): its strength is reduced by the disor-
der; it is even suppressed at the crossing point since then
α2

d = β2
d = 1/2. The latter is a new component propor-

tional to the difference in Hartree-Fock energy between the
two electronic configurations involved; this contribution
may become important for a long range Coulomb interac-
tion, as it will appear later. Consequently, the Coulomb
interaction may contribute to enhance the magnitude of
the gaps and therefore, the decrease of persistent cur-
rent induced by the disorder; this statement points to the
need for further studies but, this is not our purpose in
this paper.

3.1 Exact diagonalization studies

We have first considered very small cylinders for which
it is possible to diagonalize exactly the Hamiltonian with
interaction (Eq. (5)). Below, we show results for two par-
ticular cylinders with N = 4, M = 2, t′ = 1.5t, Ne = 4 –
example 1 – and N = 3, M = 2, t′ = t, Ne = 4 – exam-
ple 2 – with two electrons with spin up and two with spin
down, in both cases. Without interaction, the ground state
energy curves of the two examples show only one cross-
ing point in the range φ ∈ [0, 1/2]. In the example 1, we
consider two different hopping matrix elements in order
to avoid a too high degree of accidental degeneracy at the
crossing point. Indeed, for t′ = t there is four degenerate
energy levels at the crossing point but only two with our
particular choice, as for the example 2, which makes the
analysis simpler. In the two examples, the unique scatter-
ing event involves one-electron states that have the same
set of quantum numbers: (0, 1) → (−1, 2). The results are
shown in Figure 3 (example 1) and Figure 4 (example 2)
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Fig. 3. Exact ground state energy as function of the magnetic
flux of a small cylinder (N = 4, M = 2, t′ = 1.5t, Ne = 4 and
Sz = 0) for increasing values of the long-range Coulomb inter-
action, U , in units of |t|. Due to interaction, the crossing point
of the non-interacting case is replaced by an avoided crossing.
As expected, the magnitude of the gap increases with the in-
teraction strength. The curves are shifted down for clarity.

for increasing values of the Coulomb potential. Three ef-
fects of the Coulomb interaction can be seen.

– First, the crossing point of the free-electron model may
be replaced by an avoided crossing due to direct inter-
action between the states |Ψi〉 and |Ψo〉: the Coulomb
interaction may open a gap. According to the selection
rules found previously, this interaction is non-null for
example 1 and null for example 2, which is in agree-
ment with the results shown in Figures 3 and 4. More-
over, the avoided crossing becomes more and more pro-
nounced by increasing the strength of the Coulomb
interaction (Fig. 3).

– Second, the position in magnetic field of the (avoided)
crossing point may be shifted, φc → φ̃c, and the im-
portance of the shift increases with the strength of
the interaction. In the following, we call this effect the
‘Coulomb effect’. It is clearly seen in Figure 4.

– Third, for large enough U , one notes the formation of
a new plateau like structure in the ground state energy
curve of Figure 4 at the position of the crossing point
whose size increases with the interaction strength. To-
gether with the appearance of this plateau, two new
real crossing points are formed. We will see later that
this plateau is explained by the spin degree of freedom:
this is a ‘spin effect’.

The effects of the Coulomb interaction introduced
above, are studied in more details in the following two sub-
sections using simple approximations allowing for the
study of larger systems.
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Fig. 4. Exact ground state energy as function of the magnetic
flux of a small cylinder (N = 3, M = 2, Ne = 4 and Sz = 0)
for increasing values of the long-range Coulomb interaction, U ,
in units of |t|. The crossing point is shifted to higher magnetic
flux with increasing interaction. For strong enough interaction,
there is appearance of a new plateau that can be explained by
spin excitations. The curves are shifted up for clarity.

3.2 Two reference ansatz. Coulomb effect

In this subsection, we focus on the weak-interacting regime
where a mean field theory is supposed to be a good start-
ing point. However, since the free electron ground state
becomes degenerate for some particular values of the mag-
netic field (cf. Fig. 2a), one expects in the interacting case,
the ground state of the system to become at the vicinity of
some particular crossing points, a true many body state
unable to be described by only one Slater determinant.
A traditional Hartree-Fock theory based on one reference
is then not appropriate. We propose here, a simple vari-
ational ansatz going beyond an Hartree-Fock description
and able to capture some of the important many-body
effects.

It was suggested long ago [30], to extent the usual
Hartree-Fock theory for linear combination of Slater
determinants

|ψ〉 =
∑

k

αk|Φk〉 (13)

where αk are variational parameters and |Φk〉 are chosen
Slater determinants built from one-electron states deter-
mined by the variational principle [31,32]. The choice of
Slater determinants entering the composition of |ψ〉 is,
of course, motivated by the problem under studies. This
kind of theory is particularly relevant in case of degeneracy
such that appearing here at some values of the magnetic
flux, φc.

Before studying the minimal ansatz of the form (13)
relevant for our particular problem, we start by introduc-

ing new operators which are linear combinations of the
site operators seen previously

Ai,σ =
∑

n,m

ai
n,mcn,m,σ (14)

where ai
n,m are complex coefficients that fulfilled the or-

thonormalization conditions
∑

n,m ai∗
n,ma

i′
n,m = δi,i′ . At

best, these coefficients are determined after a variational
procedure as it will be done latter. For the free electron
model, these operators correspond to the molecular or-
bitals, eigenfunctions of Ĥ0 (Eq. (3)). In any case, they are
listed by increasing value of their corresponding energies.

In the non-interacting case, the ground state energy
shows points of degeneracy as function of the magnetic
flux. For Sz = 0, each of these points shows at least, a
fourfold degeneracy. The degenerate states are listed in
the following.

|ψI〉 =
N̄∏

i=1

A†
i↑A

†
i↓|0〉 (15)

where N̄ = Ne/2 and |0〉 is the vacuum without any elec-
tron. This state is the state |Ψi〉 mentioned before. The
three other degenerate states are

|ψII〉 = A†
N̄+1↓A

†
N̄+1↑AN̄↓AN̄↑|ψI〉 (16)

which corresponds to the state |Ψo〉,
|ψIII〉 = A†

N̄+1↑AN̄↑|ψI〉 (17)

and
|ψIV 〉 = A†

N̄+1↓AN̄↓|ψI〉. (18)

The four Slater determinants are represented schemati-
cally in Figure 5 together with the behavior of their cor-
responding energies as function of the magnetic field.

The electronic configurations |ψI〉 (|Ψi〉) and |ψII〉
(|Ψo〉) are closed-shell. They are expected to give the main
contribution to the ground state for values of magnetic
flux sufficiently lower or higher than φc, respectively. The
two other configurations, |ψIII〉 and |ψIV 〉, are mono-
excitations with respect to |ψI〉 or |ψII〉. They are ex-
pected to play a role in the direct vicinity of φc only
(Fig. 5). To do an analogy with a scattering process,
|Ψi〉 and |Ψo〉 describe the system asymptotically i.e. suf-
ficiently away from the ‘collision time’ φc, in its incoming
and outcoming state, respectively. As far as the interaction
strength remains weak, it seems reasonable as a first trial
to include only the closed-shell determinants in the linear
combination (13); we will see, at the end, that this simple
ansatz gives good results not too close to the degenera-
cies and is sufficient to describe (i) the avoided crossing
formation and (ii) the Coulomb effect but not the spin ef-
fect. Within this approximation, we consider the following
two-reference ansatz

|ψ〉 = α|ψI〉 + β|ψII〉 =

[
α1̂ + βA†

N̄+1↓A
†
N̄+1↑AN̄↓AN̄↑

] N̄∏

i=1

A†
i↑A

†
i↓|0〉 (19)



S. Pleutin: Interaction effects on persistent current of ballistic cylindrical nanostructures 411

φc

III

IV

I

φ

II
|Ψ

|

>

>

>Ψ

>

|

Ψ
Ψ|

Fig. 5. Picture of a crossing point in the free electron case.
For Sz = 0, each crossing point is fourfold degenerate. The
four Slater determinants, |ψI〉, |ψII〉, |ψIII〉 and |ψIV 〉 (see
text) are shown schematically together with the behavior of
their corresponding energies as function of the magnetic flux.
The full rectangles represent all the doubly occupied levels ex-
cept the two highest ones, ϕH

pi,qi
and ϕH

po,qo
, which are ex-

plicitely shown. In the representation of the Slater determi-
nants, the energy levels are kept fixed at a particular value
of φ, for simplicity.

where 1̂ is the unit operator. The expansion coefficients,
α and β, and the set of coefficients {ai

n,m} used to define
the one-body wave functions (14) are determined from
the variational principle. More precisely, we look for an
extremum of the ground state energy:

E(α, β, {ai
n,m}) =

〈
ψ

∣∣∣Ĥ
∣∣∣ψ

〉

〈ψ|ψ〉 . (20)

We use a two-step iterative procedure to get the best
wave-function |ψ〉. In a first step, the expansion coeffi-
cients α and β are obtained by diagonalization of the fol-
lowing two by two matrix





〈
ψI

∣∣∣Ĥ
∣∣∣ψI

〉 〈
ψI

∣∣∣Ĥ
∣∣∣ψII

〉

〈
ψII

∣∣∣Ĥ
∣∣∣ψI

〉 〈
ψII

∣∣∣Ĥ
∣∣∣ψII

〉



 . (21)

In a second step, the coefficients ai
n,m are estimated keep-

ing the expansion coefficients, α and β fixed. Minimization
of E(α, β, {ai

n,m}) with respect to the set {ai
n,m} gives the

so-called generalized Brillouin theorem for multiconfigu-
rational self-consistent field theory [31,32], valid for any
multireference states (13)

〈
ψ

∣∣∣
[
A†

r,σAs,σ, Ĥ
]∣∣∣ψ

〉
= 0. (22)

The Brillouin theorem for usual HF theory states that
the matrix elements of the total Hamiltonian between the
ground state and any mono-excitations cancel out. Its gen-
eralization to multireference HF theory is less clear: it
means that the matrix elements of the total Hamiltonian
between the ground state and some linear combinations of

excited configurations cancel out. Using this condition, it
is possible to calculate the set of coefficients {ai

n,m} as we
will see below. Then, the process is continued by repeating
these two steps until convergence is reached.

The first step is straightforward. At each iteration, one
has to calculate the energies of the states |ψI〉 and |ψII〉
and the coupling term, Γ (at the very first iteration, it
is given by Eq. (9)). Then, one has to diagonalize the
corresponding two by two matrix (21).

For the second step, to proceed starting from equa-
tion (22), we follow closely reference [31]. In order to make
use of the generalized Brillouin theorem, it is convenient
to rewrite the Hamiltonian as

Ĥ = F̂ − V̂ + Ĥint (23)

where V̂ is an effective one-body operator and, F̂ is the
Fock operator which we require to be diagonal

F̂ = Ĥ0 + V̂ =
∑

r,s,σ

δrsεrA
†
r,σAr,σ. (24)

Then, starting from equation (22) one gets
〈
ψ

∣∣∣
[
A†

r,σAs,σ, V̂
]∣∣∣ψ

〉
=

〈
ψ

∣∣∣
[
A†

r,σAs,σ, Ĥint

]∣∣∣ψ
〉

(25)

that can be solved to extract V̂ and, thereby, to build the
Fock operator. By setting down, V̂ =

∑
k,l,β Vk,lA

†
k,βAl,β

and Ĥint = 1
2

∑
k,l,m,n,α,β Uk,l,m,nA

†
k,αA

†
m,βAn,βAl,α,

equation (25) can be rewritten as

∑

k

〈
ψ

∣∣∣Vs,kA
†
r,σAk,σ − Vk,rA

†
k,σAs,σ

∣∣∣ψ
〉

=

∑

k,l,m,β

〈
ψ

∣∣∣Us,k,l,mA
†
r,σA

†
l,βAm,βAk,σ

+Ur,k,l,mA
†
k,σA

†
l,βAm,βAs,σ

∣∣∣ψ
〉
. (26)

For our particular ansatz (19), where we have considered
doubly occupied levels only, this equation greatly sim-
plify to

Vs,r

〈
ψ

∣∣∣N̂r,σ − N̂s,σ

∣∣∣ψ
〉

=

∑

k,l,m,β

〈
ψ

∣∣∣Us,k,l,mA
†
r,σA

†
l,βAm,βAk,σ

+Ur,k,l,mA
†
k,σA

†
l,βAm,βAs,σ

∣∣∣ψ
〉

(27)

where N̂k,β = A†
k,βAk,β is the number operator.

Let us name ξrχσ, with 1 ≤ r ≤ N.M and σ =
±1/2, the variational one-electron wave functions associ-
ated with the fermionic operators A†

r,σ and Ar,σ. ξr is the
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orbital part, listed by increasing values of energy, χσ, the
spin part. The set of orbitals (set I, SI) with 1 ≤ r ≤ N̄−1
(N̄ = Ne/2) are occupied in both of the two components
of |ψ〉, |ψI〉 and |ψII〉; on the opposite, the set of orbitals
(set III, SIII) with r > N̄ + 1 are unoccupied in |ψI〉
and |ψII〉; the orbitals r = N̄ and r = N̄ + 1 (set II,
SII) are occupied either in |ψI〉 or in |ψII〉. The expres-
sion of the matrix elements of V̂ depends on the orbital
indices r and s. First, it is important to stress that some
of the matrix elements of the effective one electron oper-
ator, V̂ , are not determined by the generalized Brillouin
condition and additional assumption are therefore needed
to get the full Fock operator. Indeed, if {r, s} ∈ S2

I
or {r, s} ∈ S2

III , the corresponding matrix elements, Vr,s,
can’t be found with the expression (27) since in this case
〈ψ|N̂r,σ|ψ〉 = 〈ψ|N̂s,σ|ψ〉. For all the other cases, Vr,s are
fully determined by equation (27). Giving the ansatz (19),
four cases should be distinguished that give different for-
mal expressions for Vr,s, depending on the values of r
and s: {r, s} ∈ S2

II , {r, s} ∈ SI × SII or {r, s} ∈ SII × SI ,
{r, s} ∈ SII × SIII or {r, s} ∈ SIII × SII , and, finally,
{r, s} ∈ SI ×SIII or {r, s} ∈ SIII ×SI . In the latter case,
one can easily check that equation (27) gives the usual
Hartree-Fock equations.

Having partly determined V̂ , we build now the Fock
operator (24). Because of the special form of V̂ , the Fock
operator takes a block structure written, using the same
notation as in reference [31], as follows

F =





Fcc Fco Fce

Fco Foo Foe

Fce Foe Fee



 . (28)

The one-electron operator F̂cc is defined in the subspace
spanned by ξr in set I, F̂oo in the subspace spanned by
ξN̄ and ξN̄+1 (set II) and F̂ee in the subspace spanned by
ξr in set III. This block structure is general when using a
general multireference ansatz such as (13) [31]. As already
mentioned, the effective Fock operator is non-uniquely de-
fined by the generalized Brillouin condition. Indeed, only
the off-diagonal blocks and Foo are determined by us-
ing equations (22) and (24). Additional assumptions are
needed to fix the two other diagonal blocks, Fcc and Fee:
here, we calculate these blocks as matrix elements of the
one-particle operator F̂ce, procedure particularly appro-
priate for closed shell configurations [31].

In order to test the quality of the variational wave
function (19), we have first considered very small cylin-
ders and compared the approximate results with the re-
sults obtained by exact diagonalization. Figure 6 shows
a comparison between results obtained by the variational
calculations and exact diagonalization, for weak interac-
tion (U = 0.1t and U = 0.2t). A good agreement is ob-
tained which becomes excellent away from the crossing
points (Fig. 6 shows only the direct vicinity of the crossing
point). As we can see, our simple variational ansatz (19)
describes well the Coulomb effect i.e. the shift of the
crossing point, but is less accurate at the crossing itself.

0.2 0.205 0.21 0.215 0.22
φ

0.7

0.71

0.72

0.73

0.74

0.75

E
(φ

)−
E

(0
)

Fig. 6. Zoom of the ground state energy of a small cylinder
(N = 3, M = 2, Ne = 4 and Sz = 0) with long range Coulomb
interaction in the direct vicinity of the crossing point. The full
curve and the dashed curve are the exact results for U = 0.2
and U = 0.1 (in units of |t|), respectively. The full dots and
the full squares are the results obtained with the two-reference
variational ansatz (Eq. (19)) for U = 0.2 and U = 0.1 respec-
tively: the Coulomb effect is well reproduced but not the ap-
pearance of a plateau which is the result of spin excitations not
contained in the ansatz. The curves corresponding to U = 0.1
are shifted down for clarity.

These discrepancies could be due to the spin effect, already
briefly discussed on the basis of exact diagonalization re-
sults, or could be explained by the extreme simplicity of
our ansatz (19) where the two open-shell Slater determi-
nants (17) and (18), and many other configurations, are
not included.

Before going further, let us discussed in some details
the origin of the Coulomb effect well described by our
ansatz. For simplicity, we neglect the off-diagonal term of
the two by two matrix equation (21) – responsible for the
opening of the gaps – and the Fock term keeping only the
most important contribution of the Coulomb interaction,
namely the Hartree term. As a last approximation, instead
of considering the self-consistent procedure just described
we keep only the first order correction. Without interac-
tion, at every cusp, φc, the system changes of ground state
from |Ψi〉 to |Ψo〉. The energies of these two states are
Ei(φ) and Eo(φ). They are both two parabola-like curves
that cross at φc, Ei(φc) = Eo(φc). The electron densities
of these two states are ρi(n,m, φ) and ρo(n,m, φ), respec-
tively, which differ in general i.e. ρi(n,m, φ) �= ρo(n,m, φ),

ρα(n,m, φ) = 2
∑

(pα,qα)occ.

|ϕpα,qα(n,m, φ)|2 (29)
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Fig. 7. Schematic representation of the Coulomb effect. The
dashed curves represent the ground state energy of the sys-
tem without Coulomb interaction: there is a cusp at φc cor-
responding to a change of ground state |ψi〉 → |ψo〉; at this
point the ground state is degenerate, Ei(φc) = Eo(φc). The
full curves represent the ground state energy with Coulomb
interaction: the two initial parabola are shifted up by the
Hartree contributions, Wi and Wo, which have different am-
plitudes; consequently, the two interacting ground states are
exchanged at a different value of the magnetic flux, φ̃c, such
that Ei(φ̃c) +Wi(φ̃c) = Eo(φ̃c) +Wo(φ̃c). In other words, the
long range Coulomb interaction produces a shift of the position
of the cusp, φc → φ̃c.

where α = i/o. The first order Hartree corrections, Wi(φ)
and Wo(φ), are given by

Wα(φ) =
1
2

∑

(n,m)
(n′,m′)

ρα(n,m, φ)U(n,m),(n′,m′)ρα(n′,m′, φ)

×
(

1 − 1
2
δ(n,m),(n′,m′)

)
. (30)

Since the densities differ, the magnitude of the Hartree
corrections will also be different – in particular, at the
crossing point, Wi(φc) �= Wo(φc). In consequence of that,
the two parabola, Ei(φ) and Eo(φ), are shifted more or
less strongly with Coulomb interaction to higher energies
by the Hartree corrections, Wi(φ) and Wo(φ). Since the
Hartree terms have different magnitude, the two-shifted
parabola will cross at a different value of the magnetic flux,
φ̃c, such that Ei(φ̃c) + Wi(φ̃c) = Eo(φ̃c) + Wo(φ̃c). This
is the Coulomb effect illustrated schematically in Figure 7
and observed, for instance, in the exact results shown in
Figures 4 and 6. For the very particular case discussed
in Figure 3, the two Hartree contributions, Wi/o, are the
same and there is no shift.

The magnitude of the shift is determined mainly by the
difference between the Hartree contributions, δW (φ) =
Wi(φ) − Wo(φ), caused by the highest occupied states,
ϕH

pi,qi
and ϕH

po,qo
. If one uses more compact notation re-

placing the two pairs of indices, (pi, qi) and (po, qo), by ki

and ko, respectively, and if one works in the momentum
space instead of the real space, the mean contribution

to δW (φ) is given, at first order in perturbation theory,
by the following equation

δW (φ) ∝
∑

q

(∣∣ϕH
ki

∣∣2 Uq |ϕki+q|2 −
∣∣ϕH

ko

∣∣2 Uq |ϕko+q|2
)

∼
∑

q

(∣∣ϕH
ki

∣∣2 Uq |ϕki+q|2 −
∣∣ϕH

ko

∣∣2 Uq+δq |ϕki+q|2
)

(31)

where the summation is done for states that are occupied
in the ground state, Uq is the Fourier transform of the
Coulomb interaction and δq = k0 − ki. On the basis of
this approximate formula, one can draw some conclusions.
First, one sees that the magnitude of δW (φ) would be en-
hanced by a long range Coulomb interaction which gives
diverging contribution at small momenta, q, (for instance,
the Coulomb interaction behaves as 1/q for a two dimen-
sional system) on the contrary to short range interac-
tion that provides only constant contribution (indepen-
dent of q). Second, If δq is small, as it happens for Forward
Scattering (FS), one may neglect in the formula (31) the
difference between the one-particle states ϕH

ki
and ϕH

ko
.

Then, δW (φ) becomes roughly proportional to the deriva-
tive of the Coulomb interaction, dUq/dq, which is a diverg-
ing quantity at small values of q (for infinite lattice) in the
case of long range potential. To conclude, (i) we expect a
large Coulomb effect for long range potential and, compar-
atively, no effect for short range potential, (ii) in the case
of long range potential, since the difference between ki

and ko are smaller for FS crossing points, than BS cross-
ing points, the Coulomb effect are expected to be stronger
for FS than BS. These two conclusions are confirmed both
by exact diagonalization for small cylinders (see Figs. 4,
12 and 14) and by using our variational ansatz as we will
see below.

We consider a bigger cylinder with N = 10, M = 10
and Ne = 80 (40 electrons up and 40 electrons down).
Then, it is not possible anymore to do exact calculation
and one has to rely on the approximate result. Important
shifts of all the crossing points are obtained (cf. Fig. 8).
As it is expected from the qualitative argument above, the
most important shift is obtained for FS type of crossing
points: in our example a shift of more than 5 × 10−2φ0 is
obtained which corresponds to significant value of mag-
netic field. Note that with on-site interaction only, no
differences compared to the non-interacting case can be
detected at the scale of the figure. This confirms that
the magnitude of the shifts is controlled by the range
of the Coulomb interaction, in agreement with our qual-
itative argument based on equation (31). A screening of
the Coulomb interaction, induced by a close metallic elec-
trode, for instance, will tend to decrease the magnitude of
the Coulomb effect.

According to the analysis of the crossing points done
in the previous section, only the states |Ψi〉 and |Ψo〉 of
the last crossing point fulfilled the selection rules for in-
teraction. Indeed, at this point one gets ∆p = −5, which
is a value such that ∆p = zN

4 for z = −2. Consequently,
the last crossing point of this example should be replaced
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Fig. 8. Ground state energy as function of the magnetic flux
for a cylinder with N = M = 10, Ne = 80 and Sz = 0. The
full curve is obtained with the two reference ansatz (Eq. (19))
for U = 0.08 in units of |t|, the dashed curve is for the case
without interaction (U = 0). All the cusps are shifted to higher
magnetic flux by the long-range Coulomb interaction; this is
the Coulomb effect, particularly important in the FS case. One
may notice that the same calculation, but with an on-site in-
teraction only (Hubbard model), gives approximately the same
result than the non-interacting one.

by an avoided crossing in the case with Coulomb inter-
action. This is not clearly seen in Figure 8 because the
interaction strength is too weak. However, the smooth be-
havior due to the formation of a gap becomes apparent
for larger interaction strength (see the inset of Fig. 13);
this confirms both, the validity of the selection rules and
the ability of our variational ansatz to describe avoided
crossing formations.

The corresponding persistent current is shown in Fig-
ure 9 and compared to the one obtained for the very same
cylinder but without Coulomb interaction. The discon-
tinuities appear shifted to higher magnetic flux due to
the Coulomb effect. This is particularly sensible for the
FS event for which, moreover, the magnitude of the dis-
continuity is enhanced.

To conclude this subsection, one may add one im-
portant remark. Even without interaction between the
electronic configurations |Ψi〉 and |Ψo〉, the Coulomb ef-
fect makes the use of an usual Hartree-Fock procedure,
based on only one Slater determinant, difficult. Indeed,
the Coulomb interaction shift the position in magnetic
field of the crossing points. These shifts produce a change
of ground state at the vicinity of each crossing point
(cf. Fig. 7), |Ψo〉 → |Ψi〉, which renders the choice of
the reference state to start the self-consistent calculation
rather tricky. Another advantage of our procedure is to
treat equally the two configurations in parallel: at each
step, their energies are calculated and compared which al-
lows to choose the proper ground state automatically and
without any ambiguity.
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Fig. 9. Persistent current as function of the magnetic flux for
a cylinder with N = M = 10, Ne = 80 and Sz = 0. The full
curve is obtained with the two reference ansatz (Eq. (19)) for
U = 0.08 in units of |t|, the dashed curve is for the case with-
out interaction (U = 0). The discontinuities are all shifted to
higher magnetic flux by the long-range Coulomb interaction.
The shift is more pronounced for the FS event. In this partic-
ular example, the sign of the PC is changed by the Coulomb
interaction at the FS discontinuity.

3.3 Spin effect

It is clear from the results of exact diagonalization
(cf. Fig. 4), that the ansatz (19) is not sufficient for rela-
tively high Coulomb interaction. At least, we have missed
in the linear combination (13) the two mono-excitations
|ψIII〉 and |ψIV 〉. These two configurations are degener-
ate in energy in the non-interacting case (U = 0), but are
mixed in the interacting case (U �= 0) to give a singlet
component, at high energy, and a triplet component, at
low energy, separated by a gap of 2Γ̂ , Γ̂ being the ex-
change energy

Γ̂ =
∣∣∣
〈
ψIII

∣∣∣Ĥ
∣∣∣ψIV

〉∣∣∣ . (32)

The corresponding wave functions are given by the sym-
metric and antisymmetric linear combinations

|ψT/S〉 =
1√
2

[∣∣ψIII

〉 ∓ ∣∣ψIV

〉]

=
1√
2

[
A†

N+1,↑AN,↑ ∓A†
N+1,↓AN,↓

] ∣∣ψI〉 (33)

where the indices T is for Triplet and S for Singlet. The
triplet state may be lower in energy than the variational
ground state found in the previous subsection.

To add the components (17) and (18) to the trial wave
function (19) would increase the number of variational
parameters by two. But, more importantly, since |ψIII〉
and |ψIV 〉 are both mono-excitations i.e. open shell con-
figurations, this would force us to change the procedure
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Fig. 10. Zoom of the ground state energy of a small cylinder
with N = 3, M = 2, Ne = 4 and Sz = 0, with long range
Coulomb interaction, around the crossing point region. The full
curve is the exact result for U = |t|. The open circles denote the
result obtained with the two reference ansatz (Eq. (19)). The
full dots denote the result obtained by taking the minimum
between the values given by the two reference ansatz and the
triplet built out of the variational solution (Eq. (34)). As it is
shown by the analysis of the results given by both the exact
diagonalization and our approximation, the plateau is caused
by transitions of the total spin, S = 0 → S = 1 → S = 0. The
Coulomb interaction, by changing the total spin, induces new
real crossing points.

of calculation described in the previous subsection. To
give an analogy with usual HF theory, one would have
to change from a restricted Hartree-Fock to unrestricted
Hartree-Fock type of calculation [31]. We postpone this
treatment to forthcoming work and, instead, we adopt
a kind of minimal strategy to get a first understanding
of what could be the role of the spin at the vicinity of
the crossing points. Starting from the variational solu-
tion (19), we form the triplet wave function (33) and es-
timate its energy

ET

(
α, β,

{
ai

n,m

})
=

〈
ψT

∣∣∣Ĥ
∣∣∣ψT

〉
(34)

keeping the parameters α, β and {ai
n,m} frozen. The re-

sults obtained for the triplet state are then not variational
but should give, nevertheless, useful indications about the
total spin of the ground state as function of the applied
magnetic field.

An example is shown in Figure 10 for a very small
cylinder with U = t. The two reference ansatz (19) repro-
duces well the shift of the crossing point (see also Fig. 6),
but the additional ‘plateau’ is missed by this approxima-
tion. However, it is partially described if one considers
also the triplet state with energy (34). On a certain inter-
val of magnetic flux – corresponding to the plateau – the
triplet state (33) is lower in energy than the two-reference
ansatz (19), as it is confirmed by exact diagonalization: a
longitudinal magnetic field is able to change the total spin
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Fig. 11. Persistent current as function of the magnetic flux
for a cylinder with N = 3, M = 2, Ne = 4 and Sz = 0. The
full curve is the exact result for U = |t| and the dotted curve
is for the non-interacting case. The long range Coulomb inter-
action induces a shift of the discontinuity plus appearance of a
new plateau. This plateau can be explained by singlet-triplet
transitions (see text).

of the system due to an interplay of orbital effects and
Coulomb interaction. It follows sequences of transitions of
the total electronic spin, S = 0 → S = 1 → S = 0, oc-
curring at the vicinity of each point of (near) degeneracy.
At each spin transition, a new real crossing point appears.
Figure 11 shows the corresponding persistent current com-
pared with the one obtained for the non-interacting case.
The long-range Coulomb interaction shifts the discontinu-
ities – this is the Coulomb effect – and is responsible for
the appearance of a new ‘plateau’ – the Triplet plateau –
which may be detected experimentally.

The above result may be explained by a qualitative
argument based on the Hund’s rule. In case of double de-
generacy, or near degeneracy, and for Sz = 0, the Coulomb
interaction will favor the state where the two degener-
ate levels, ϕH

pi,qi
and ϕH

po,qo
, are mono-occupied. Indeed,

it costs more Coulomb energy to doubly occupied one of
these two levels. Moreover, the repulsive interaction will
favor the state with maximum total spin, here S = 1, since
the coordinate wave function is then anti-symmetrized
which allows to gain the exchange energy. The two high-
est electrons will occupy the levels ϕH

pi,qi
and ϕH

po,qo
with

total spin one, as long as the energy difference between
the levels remains smaller than the energy gain due to
Coulomb interaction. At this point, it is important to re-
member that we have not considered the Zeeman interac-
tion which may change the picture at high magnetic field.
Indeed, oscillations of the Sz component of the total elec-
tronic spin were pointed out for 1D rings and finite square
lattices [16].

Before doing the same analysis for a bigger cylinder, we
present results of exact diagonalization of the very same
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Fig. 12. Ground state energy of a small cylinder with N = 3,
M = 2, Ne = 4 and Sz = 0, with short range interaction
(Hubbard model) for increasing values of U , in units of |t|, ob-
tained by exact diagonalization. Compared to the results with
a long-range potential (Fig. 4), the Coulomb effect is strongly
reduced but the spin effect is enhanced, in the sense that it
becomes relevant for lower values of U and, that the Triplet
plateau is larger. The curves are shifted down for clarity.

small cylinder but with a short-range Coulomb interac-
tion (Hubbard model). The results are summarized in Fig-
ure 12 where the ground state energy is shown as function
of the magnetic flux for several values of U . These results
have to be compared with the ones of Figure 4 presenting
the same quantity but using the long-range Coulomb in-
teraction (Eq. (7)). One sees, first, that the Coulomb effect
is considerably reduced by the use of an on-site term only:
there is almost no shifting of the crossing points. Second,
the spin effect is, on the contrary, sensibly enhanced in the
sense that (i) the Triplet plateau appears for lower values
of U and, (ii) this plateau can be much more extended
in magnetic flux. It seems that there is a kind of com-
petition between the two effects. The more the Coulomb
effect is important the more the size of the Triplet plateau
is reduced. This can be partly understood by the following
qualitative argument.

The difference in energy at the (avoided) crossing point
between the variational ground state and the Triplet state
is given by

F (
α, β,

{
ai

n,m

})
= E (

α, β,
{
ai

n,m

})−ET

(
α, β,

{
ai

n,m

})
=

1
8

∑

(n,m),(n′,m′)

(ρi(n,m) − ρo(n,m))U(n,m),(n′,m′)(ρi(n′,m′)

− ρo(n′,m′)) − Γ + Γ̂ . (35)

If F > 0, the Triplet state is the ground state of the
system. We focus only on the first term on the right side
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Fig. 13. Ground state energy as function of the magnetic flux
for a cylinder with N = M = 10, Ne = 80 and Sz = 0 with a
short range electron-electron interaction (Hubbard model) and
U = 0.4|t|. The full curve is the result given by the two ref-
erence ansatz (Eq. (19)), the dashed curve is the energy of
the triplet state (Eq. (34)) built out of the variational ansatz.
Around each crossing or avoided crossing, there is a sequence
of Singlet → Triplet → Singlet transition: for some intervals
of magnetic flux, the system is in a triplet ground state. This
interval is very large in the vicinity of the FS point. These
changes of total spin give new real crossing points. On the
one hand, the Coulomb interaction replaces some of the cross-
ings of the free electron description by avoided crossings, but,
on the other hand, creates new crossing points due to spin tran-
sition. A zoom on the last crossing points is shown in the inset;
a smooth behavior due to the formation of an avoided crossing
is visible in the full curve, in agreement with the selection rules
(see text).

of the equality sign: it is always positive with an on-site
interaction (in favor of a Triplet ground state), but since
the difference in density, δρ(n,m) = ρi(n,m) − ρo(n,m),
is in general an oscillatory function, it may be negative
with a long range Coulomb interaction. Therefore, as it
is seen in exact diagonalization studies, the spin effect is
expected to be more pronounced for screened interaction.

Our procedure gives good agreement with exact results
(cf. Fig. 10), this suggests that the spin transitions pointed
out here, should occur for large systems too. Next, we
have considered a bigger cylinder with N = 10, M = 10,
Ne = 80 and Sz = 0, and evaluated the variational energy
(Eq. (20)) and the corresponding triplet energy (Eq. (34)).
For the Ohno potential (Eq. (7)), there is no range of mag-
netic flux where the Triplet state would be significantly
favored within our approximation and for relatively low
values of U (up to U = 2|t|). On the contrary, for the
Hubbard interaction, there is a Singlet→ Triplet transi-
tion at every crossing points for strong enough U . This is
shown in Figure 13 for U = 0.4|t|. One can notice, a large



S. Pleutin: Interaction effects on persistent current of ballistic cylindrical nanostructures 417

0 0.1 0.2 0.3 0.4 0.5
φ

−1

0

1

2

3

E
(φ

)−
E

(0
)

Fig. 14. Ground state energy of a small cylinder with N = 3,
M = 2 and U = 100|t|. The dotted and dashed curves are for
Ne = 4, Sz = 0, short and long range Coulomb interaction,
respectively. The dot-dashed and full curves are for Ne = 3,
Sz = 1/2, short and long range Coulomb interaction, respec-
tively. The spin effect doesn’t occur in the cases with one un-
paired electron (see text).

Triplet plateau for values of the magnetic flux correspond-
ing to the FS point.

Last, we have considered exclusively the case with
equal numbers of up and down electrons up to now i.e.
Sz = 0. The conclusions will be different with an un-
paired electron i.e. Sz = ±1/2. Indeed, in this case, at
each crossing point the ground state of the free electron
model is only twofold degenerate and not fourfold as it is
the case for Sz = 0. Therefore, with Coulomb interaction,
the avoided crossing formations (but with different selec-
tion rules) and the Coulomb effect should persist but, on
the contrary, the spin effect described above should not.
We have down exact calculations for very small cylinders.
Figure 14 shows examples for N = 3, M = 2, U = 100|t|,
2 spin up and 1 spin down compared to the case with
4 electrons and Sz = 0. One clearly sees that, for both
long and short range Coulomb interaction, the spin effect
described in this work doesn’t occur in the case with one
unpaired electron.

In the early nineties, the spin effect was predicted to
occur in 1D rings [15,16,18] and its interpretation based
on the Hund’s rule already proposed in reference [18].
More spectacular, a Fractional Persistent Current effect
was found for very strong interaction [15]. Without inter-
action, the ground state energy is periodic with period-
icity φ0 [22,23]. With infinite interaction, the spin-charge
separation occurs. The system behaves then as a collec-
tion of free spinless fermions in an effective magnetic flux,
φ/Ne (where Ne is the number of electrons) caused by the
spin degree of freedom: the spin excitations contribute to
change drastically the behavior of the ground state en-

ergy by changing its periodicity to φ0/Ne. The importance
of the spin was also stressed using the Luttinger-Liquid
methodology: while spinless electrons were shown to be-
have as free-electrons showing parity effect and period of
φ0 [19], including the spin has deep influences, halving
the period in the weak interacting case, for instance [20].
A first extension to multichannel systems in the weak in-
teracting regime is proposed in the present work. It would
be, of course, very interesting to be able to extrapolate
what could happen for very large interaction. This was
done in reference [33] but, in the limit of very low electron
density where the ground state of the system is close to a
rotating Wigner crystal; for the two particle case, a spin
transition was also found.

Before the conclusion, one may add that similar spin
sequences, as the one pointed out in this subsection, were
already predicted to occur in short armchair carbon nan-
otubes under the influence of an inhomogeneous gate po-
tential [34]. The carbon nanotubes have two families of
levels which react differently to this applied potential, cre-
ating level crossings. Then, for even number of electrons,
in the very same way as described here, the first Hund’s
rule drives the system from a singlet (S = 0) to a triplet
state (S = 1) at the vicinity of the crossing points. The
same phenomenon was also described to happen in quan-
tum dots where the signature of the spin transition was ex-
pected to be seen in the variation of the Coulomb-blockade
peak positions [35].

4 Discussion and conclusion

We have considered in this work electrons moving on the
surface of nanoscopic cylinders described as rolled square
lattices. Without disorder – or with a weak disorder – a
static magnetic field applied along the cylinder axis in-
duces points of degeneracy – or quasi-degeneracy. With
Coulomb interaction, depending on particular selection
rules, direct interaction may happen between degener-
ate – or quasi-degenerate – electronic configurations. In
this case, the ground state of the system becomes at the
vicinity of crossing or avoided-crossing points, a many
body state unable to be described by any mean field
theory based on only one Slater determinant (as usual
Hartree-Fock theory). To handle this difficulty, we have
proposed and studied a simple variational ansatz which
is a linear combination of the two closed shell Slater de-
terminants that become degenerate. In addition, we have
also considered the lowest triplet state built out of the
variational solution. As a result, we have found three ef-
fects induced by the electron-electron interaction at the
vicinity of these points of degeneracy or quasi-degeneracy.

– Avoided crossings. The Coulomb interaction induces
couplings between the degenerate configurations at
particular crossing points: a gap is then opened.

– Coulomb effect. With repulsive interaction the energy
of the diverse Slater determinants are shifted up by the
Hartree contributions. Because the magnitude of these
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contributions differs from configuration to configura-
tion, the Coulomb interaction contributes to shift the
position in magnetic field of the (avoided) crossings.

– Spin effect. When degeneracy occurs and for Sz = 0,
due to the Hund’s rule, the system may be driven to
a triplet state. Therefore, at the vicinity of the de-
generacy points, the Coulomb interaction can induce
a sequence of transition Singlet → Triplet → Singlet.
In the case of unpaired electron, Sz = ±1/2, the spin
effect doesn’t occur.

The Coulomb effect is due mainly to the long range part of
the Coulomb interaction. On the contrary, the spin effect
is favored by short range interaction. Therefore, a screen-
ing of the repulsive interaction induced, for instance, by
a gate electrode could change the electronic properties of
the system. By considering other surfaces, as honeycomb
lattices for instance, we may change the selection rules of
the Coulomb operator but the same qualitative features
i.e. avoided crossing formation, Coulomb and spin effects,
should be seen. Applications to carbon nanotubes will be
published elsewhere.

We believe the conclusions of this work rather general
providing that the system under consideration is in the
ballistic regime i.e. weakly disordered. Indeed, all the ef-
fects described below, are the result of degeneracies, or
quasi-degeneracies, of the ground state induced by the
magnetic field (in the case without Coulomb interaction).
In principle, this always occurs for any cylindrical systems
as carbon nanotubes, ring of carbon nanotubes or rings of
usual metal or semiconductor materials.

To conclude, the electron-electron interaction, on the
one hand, mixes the different configurations and replaces
some crossing points of a free electron theory by avoided
crossings but, on the other hand, the total spin of the sys-
tem may be changed due to the Hund’s rule creating new
real crossing points. Any response function, providing that
the electronic structure of the cylinder is preserved, are
expected to show an abrupt change at the position of the
crossing points where either the total electronic spin or the
total orbital momentum are changed. This should be the
case in measurements of persistent current [4], but also, in
the static electric magnetopolarisability studied in refer-
ence [23] and already measured for an ensemble of metallic
rings [36] and, as a last example, in magnetoconductance
measurements, with bad contacts to the electrodes, such
as the one done in reference [37] where multi-walled carbon
nanotubes behave as quantum dots. Similar effects were
studied in reference [35] for quantum dots, where the spin
transitions were shown to give characteristic signatures in
the Coulomb-blockade peak positions.

I would like to acknowledge, once more, Prof. Alexander
Anatol’evich Ovchinnikov who passed away too early. He in-
troduced me into the field of mesoscopic physics and then
continuously provided remarkable insights to push our work
ahead. The present paper strongly benefits from his very per-
sonal views; they were always deep and precious and they will
certainly influence my future work. I immensely miss his sense

of humor, his extreme kindness, his numerous advises and, of
course, his wonderful talent and ability as a great theoretician.
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